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 ABSTRACT 

 Flexible software was designed to replace the cur-
rent animal model programs used for national genetic 
evaluations. Model improvements included (1) multi-
trait processing, (2) multiple fixed class and regression 
variables, (3) differing models for different traits, (4) 
random regressions, and (5) foreign data included using 
pseudo-records. Computational improvements included 
(6) parallel processing, (7) renumbering class variables 
to equation numbers within the program so that es-
timated effects are output with original identification 
numbers, and (8) reliability computed within the same 
program. When applied to 3 fertility traits of 27,971,895 
cows and heifers, the new model used daughter preg-
nancy rate as a correlated trait to improve heifer and 
cow conception rate evaluations for older animals and 
in herd-years where records are missing, and also added 
information from crossbreds. When applied to 7 traits 
and 76,846,327 lactation records of 30,064,300 cows, 
gains in accuracy were small for yield and somatic 
cell score, moderate for daughter pregnancy rate, and 
larger for productive life for recent bulls compared with 
single-trait evaluations. For very old bulls, multi-trait 
gains were also large for protein because lactation re-
cords were available only for milk and fat. Multi-trait 
productive life was computed with exact rather than 
approximate methods; however, correlated information 
from conformation was excluded, reducing advantages 
of the new model over the previous software. Estimates 
of breed differences, inbreeding depression, and hetero-
sis were similar to previous estimates; new estimates 
were obtained for conception rates. Predictions were 
compared by truncating 4 yr of data, and genetic trend 
validation was applied to all breed–trait combinations. 
The estimates of trend account for increases in inbreed-

ing across time. Incorporation of foreign data gave cor-
relations above 0.98 for new with previous evaluations 
of foreign Holstein bulls, but lower for other breeds. 
The 7-trait model required 35 GB of memory and 3 d 
to converge using 7 processors. The new software was 
implemented for fertility traits in 2013 and is scheduled 
for implementation with yield, somatic cell score, and 
productive life in 2014. Further revision of the models 
and software may be needed in the near future to ac-
count for genomic preselection. 
 Key words:   animal model , genetic evaluation , cor-
related trait , best linear unbiased prediction 

 INTRODUCTION 

 Multi-trait models often include multiple genetic ef-
fects within the same trait or multiple traits within the 
same trait group. Examples of the former are direct 
and maternal calving effects (Pasman and Reinhardt, 
2002) or separate lactation effects used in many coun-
tries to model yield, SCS, or fertility traits. Examples 
of the latter are multi-trait evaluations for type traits 
(Tsuruta et al., 2011), fertility traits (Liu et al., 2008), 
or yield and SCS (Schaeffer et al., 2000), because the 
same model and data pattern may apply to each trait 
within the group. In a few cases, correlated traits from 
another trait group are included, such as yield traits 
or BCS in fertility evaluations (Biffani et al., 2005; de 
Jong, 2005; Sun et al., 2010). In other cases, mainly 
for longevity, approximate multi-trait methods are used 
(VanRaden, 2001) to combine many traits across sev-
eral trait groups. 

 Genetic evaluations of US milk, fat, and protein 
yields have been computed by a single-trait animal 
model since 1989 using programs originally designed to 
minimize memory with very large data sets (Wiggans et 
al., 1988). Much of the original code remained, but the 
programs were later revised to adjust for heterogeneous 
variance (Wiggans and VanRaden, 1991), inbreeding 
(VanRaden, 2005), heterosis, and breed differences 
(VanRaden et al., 2007). The programs were also re-
vised to evaluate additional traits productive life (PL) 
and SCS in 1994 and daughter pregnancy rate (DPR) 
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in 2003. These 6 traits (milk, fat, and protein yields, 
PL, SCS, and DPR) were evaluated by using multi-
breed models including crossbred cows, whereas 2 other 
traits—heifer conception rate (HCR) and cow concep-
tion rate (CCR)—were evaluated by using single-breed 
models and BLUPF90 software (Misztal et al., 2002) 
beginning in 2010. Multi-trait processing, more uniform 
modeling across traits, the increasing numbers of traits, 
and simpler incorporation of genomic and foreign infor-
mation required a complete revision of software.

Genetic evaluations for dairy cattle are computed 
from national data sets using software and models 
that often are developed separately within each coun-
try. Information is then exchanged using multi-trait 
across-country evaluation (MACE) for males and by 
conversion formulas applied to evaluations of foreign 
females. More direct use of foreign information is now 
needed in national genomic evaluations to estimate 
genetic marker effects, along with simultaneous equa-
tions to combine phenotypes, genotypes, and pedigrees 
to avoid biases from genomic preselection. Maintaining 
or improving the accuracy of selection may require new 
models or development of new genetic evaluation soft-
ware (Aguilar et al., 2010; Mäntysaari and Strandén, 
2010; Patry and Ducrocq, 2011; Stoop et al., 2013).

Foreign information has been directly included in 
some traditional national evaluations using pseudo-
records for daughters of foreign bulls in the mixed 
model (Bonaiti and Boichard, 1995; Pedersen et al., 
1999). Methods to include foreign information in single-
step genomic evaluations with single-trait or multi-trait 
models were recently developed and tested (VanRaden, 
2012; P ibyl et al., 2013). Nearly all countries include 
foreign information from MACE to improve reliability 
when estimating marker effects in multi-step genomic 
evaluations.

Goals of the current research were to (1) develop 
flexible methods of evaluation for very large data sets, 
(2) compare predictive ability of single-trait and exact 
multi-trait models within and across trait groups, (3) 
compare trait definitions and models for fertility, and 
(4) include information from foreign bulls in an all-
breed model.

MATERIALS AND METHODS

Data

Traits examined in the first analysis were milk, fat, 
protein, PL, SCS, and DPR using 76,846,327 lactation 
records from the US national database as of December 
2012. The 3 fertility traits HCR, CCR, and DPR were 
examined in a second, separate analysis using records 
as of August 2013. The national database includes re-

cords collected since 1960 for milk, fat, protein, PL, 
and DPR; since 1988 for SCS; and since 2003 for HCR 
and CCR. Trait DPR includes historical data from 
days open, calving intervals, and reasons for culling 
plus recent data from inseminations and pregnancy 
examinations. The trait PL includes completed lifetime 
records of dead cows and predicted longevity of live 
cows, and it benefits from multi-trait processing be-
cause other, more heritable traits are measured earlier. 
Fertility traits also benefit from multi-trait processing 
because many records are missing and genetic correla-
tions among the fertility traits are high.

Lactation records for yield, SCS, and DPR were pre-
adjusted to equalize genetic variance and were weighted 
for differing error variance such as from numbers of 
test days included per lactation using the same factors 
and weights previously applied to those traits in US 
evaluations. The previous conception rate evaluations 
were based on individual binary observations for HCR 
(Kuhn et al., 2006) and CCR and used models similar 
to that for sire conception rate (Kuhn and Hutchison, 
2008; Kuhn et al., 2008). Effects of region-month of 
breeding, service number, and sex-selected or conven-
tional semen were estimated from the previous official 
models and used in the new CCR and HCR models 
to preadjust the individual observations, which were 
then averaged to create 13,119,424 lactation records for 
CCR and 3,820,912 for HCR. Records derived from >1 
observation were weighted by number of observations 
per lactation (n) using weights calculated as n/[1 + 
(n – 1) × repeatability].

A fourth cow fertility trait, days from calving to first 
insemination (CFI), was not evaluated directly but in-
stead constructed as a linear function of DPR and CCR 
evaluations. Direct evaluation of CFI is difficult with 
US data because many herds use timed AI, causing the 
date of first insemination to be determined more by 
management than by biology. Based on previous covari-
ance estimates (VanRaden et al., 2004), CFI PTA and 
reliabilities (REL) were constructed as follows:

PTA CFI = 1.2 (PTA CCR) − 3.6 (PTA DPR) and

REL CFI = 0.37 (REL CCR) + 0.63 (REL DPR).

Trait CFI is exchanged in MACE but is not yet pub-
lished in the United States.

The pedigree file included 63,021,784 animals of 
many breeds and crossbred combinations. For the most 
recent birth year (2009) with complete data, a total 
of 989,424 cows had usable first-lactation records for 
milk yield. The breed groups supplying the most re-
cords were 848,533 Holsteins (85.8%), 76,974 Jerseys 
(7.8%), 32,893 first-generation crossbreds (3.3%), 
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19,815 later-generation crossbreds (2.0%), 6,263 Brown 
Swiss (0.6%), 2,334 Guernseys (0.2%), 1,907 Ayrshires 
(0.2%), and 705 Milking Shorthorns (0.1%). Previous 
evaluations had excluded old, young, or other animals 
without phenotypes and included only those ancestors 
needed to link the phenotyped animals within each 
trait group, whereas all animals in the pedigree were 
evaluated together in the new model. Unknown parents 
were grouped by birth year, breed, and, for Holsteins, 
separately for US and foreign animals. Unknown sires 
and dams of cows were grouped separately, but un-
known parents of bulls were in a combined group. For 
HCR and CCR, the birth year groups before 2000 were 
combined because phenotypes were missing before that 
time.

Models, Parameters, and Computation

National genetic evaluations were computed by 
single-trait and multi-trait methods using an all-breed 
animal model and were compared with traditional 
evaluations from the previous software (VanRaden 
et al., 2007). Factors included in the new model were 
nearly the same as in the previous model, but manage-
ment groups were redefined for some traits to make 
definitions more uniform and simpler to store across 
traits. The same management groups based on calving 
date that were defined for yield traits were applied to 
other traits where possible in the new software, whereas 
groups in the previous software were defined separately 
by trait and were based on birth date for longevity or 
insemination date for fertility.

The first analysis combined milk, fat, protein, PL, 
SCS, and DPR records. Trait PL was included twice, 
both with and without correlations to other traits, to 
provide multi-trait PL (combined longevity) published 
nationally and single-trait PL (direct longevity) re-
quired for exchange within Interbull evaluations. When 
foreign information was added, single-trait MACE PL 
was also included in both traits and was upgraded to 
multi-trait in the first case by the correlations with 
other traits in MACE, or remained single-trait in 
the second case where correlations were set to 0. For 
each trait, the all-breed model solved for 63,021,784 
breeding values, 30,064,300 permanent environment ef-
fects, 7,631,724 herd management groups, 11,637,447 
herd-by-sire interactions, 450 age-parity effects, 669 
unknown-parent groups, and 2 regressions for inbreed-
ing and heterosis.

The second analysis combined the 3 fertility traits 
HCR, CCR, and DPR. Traits HCR and CCR mea-
sure the percentage of inseminated heifers or cows that 
become pregnant at each service, whereas DPR mea-
sures the percentage of nonpregnant cows that become 

pregnant during each 21-d time interval. The second 
analysis used the same model, but solved for slightly 
fewer effects because DPR records were present for only 
about 85% of milk records.

Variance components, genetic standard deviations 
(SD), genetic correlations, and phenotypic correlations 
for completed records used for all breeds in the multi-
trait model for the first analysis are given in Table 1. 
Most genetic correlations were from sire model REML 
using the same methods as VanRaden et al. (2004), but 
some were PTA correlations using high-reliability bulls. 
Genetic SD were the latest estimates from MACE. The 
herd variance preadjustment also adjusts other breed 
data to have the same genetic SD as Holsteins. Heri-
tability for yield records was reduced from 30% in the 
previous model to 20% for Holsteins to mimic the effect 
of cow adjustments (Wiggans et al., 2012) implemented 
to reduce bias when cows are included in the genomic 
reference population. Corresponding heritabilities for 
Jerseys and Brown Swiss were reduced from 35 to 23%. 
Reduced heritabilities had been examined previously 
using the previous software, but in this study were ap-
plied only in the new software. The error covariance ma-
trix (E) was the phenotypic minus genetic covariance, 
and its inverse was then multiplied by square roots of 
the weights for each pair of traits measured within each 
lactation. Productive life continued to be modeled with 
just one lifetime record rather than separate lactation 
records, and age-parity effects were excluded from the 
PL model.

For the second analysis, genetic correlation estimates 
were 0.45 for HCR with CCR, 0.86 for CCR with DPR, 
and 0.36 for HCR with DPR. Error correlation esti-
mates were 0.10 for HCR with CCR, 0.70 for CCR with 
DPR, and 0.10 for HCR with DPR. Conception rates 
were previously modeled using multiple binary success 
records per lactation (such as no, no, yes), whereas 
DPR is a continuous lactation measure derived from 
days open. For simpler multi-trait modeling, concep-
tion rate records are now preadjusted for environmental 
effects and are combined into lactation records before 
analysis. Estimated genetic SD were 3.9 for HCR, 5.6 
for CCR, and 3.4 for DPR.

Computation used block inversion for the multi-trait 
model, a combination of first- and second-order Jacobi 
iteration, and parallel processing. Inverses of the error 
covariance matrix for each combination of missing traits 
are precomputed and stored before iteration, and class 
variables are renumbered to equation numbers. Within 
each iteration, solutions from the previous iteration are 
multiplied by coefficients of the mixed model equations 
in parallel by trait, using as many processors as traits. 
Block diagonal submatrices are then inverted and mul-
tiplied in batches of 100,000 per processor, potentially 



Journal of Dairy Science Vol. 97 No. 12, 2014

MULTI-TRAIT NATIONAL EVALUATION 7955

using as many processors as desired. More traits could 
be included in the same multi-trait model to improve 
reliability and better account for traditional selection, 
but more parallel processors and memory would be re-
quired. The run time increases in proportion to number 
of records (not number of traits) for single-trait models 
but in proportion to numbers of records and traits 
for multi-trait models. Reliabilities were computed by 
iterative single-trait methods in parallel by trait and 
then upgraded to approximate multi-trait using meth-
ods and algorithm of VanRaden (2001).

Heterosis should increase and accumulate across time 
as relationships increase within breeds but not across 
breeds. The model including both heterosis and in-
breeding should estimate heterosis in the base popula-
tion (animals born before 1960). Current heterosis then 
equals the base heterosis minus the average current 
inbreeding coefficient times the inbreeding regression, 
because first generation crossbreds have no inbreeding 
whereas purebreds do. Base and current estimates of 
heterosis are both provided, whereas heterosis was pre-
viously estimated separately at a given point in time 
(VanRaden et al., 2007).

Effects of past inbreeding and heterosis were removed 
by preadjustment in the previous software, and future 
effects were included by postadjustment (VanRaden, 
2005; VanRaden et al., 2007). In the new software, the 
inbreeding and heterosis regressions are not treated as 
known but are estimated within the model. The US 
genetic evaluation for dairy cattle remains the only one 
that accounts for inbreeding depression. The definition 
of heterosis could be expanded in the future as in some 
other national evaluations to estimate specific breed 
combinations and recombination losses.

Foreign information was included using one record 
weighted by daughter equivalents for each bull that 
had foreign daughters instead of one pseudo-record 
for each foreign daughter as in Bonaiti and Boichard 
(1995). Daughter equivalents estimate numbers of stan-

dard daughters that provide equivalent information 
(VanRaden and Wiggans, 1991) and are very similar 
to the effective daughter contributions (Fikse and 
Banos, 2001) exchanged in MACE. Let EBVM, PAM, 
and yM be MACE evaluations, parent averages, and 
deregressed evaluations, respectively, and let RELM be 
the reliability obtained from the difference of daughter 
equivalents in the reliabilities of EBVM and PAM for the 
bull. Although simultaneous matrix deregression of all 
bulls might be better as in P ibyl et al. (2013), yM was 
estimated using the simpler one-bull-at-a-time method:

yM = PAM + (EBVM – PAM)/RELM.

This formula was applied to bulls that had only foreign 
daughters. For bulls that had both domestic and for-
eign daughters, yM contained only the foreign portion of 
information obtained by replacing PAM in the formula 
above with domestic EBV (EBVD) and obtaining RELM 
from the MACE minus domestic daughter equivalents. 
For bulls with few foreign daughters or many domestic 
daughters such that EBVM differs little from EBVD, the 
yM will be close to EBVD and the blended EBV will also 
differ little from EBVD:

yM = EBVD + (EBVM – EBVD)/RELM.

Mixed-model equations for single-trait models con-
verted the daughter equivalents in RELM to record 
equivalents and added those to the bull’s diagonal and 
multiplied by yM on the right hand side as in P ibyl 
et al. (2013). This method was also adapted to multi-
trait models by defining vector y to include yM for each 
trait of a bull, D to be a diagonal matrix containing 
RELM/(1 − RELM), and T−1 to be the inverse of the 
genetic covariance matrix among traits. Matrix T−1 
pre- and postmultiplied by the square roots of D (i.e., 
D0.5T−1D0.5) is then added to the bull’s diagonal and 
(D0.5T−1D0.5)y is added to the right hand side. Theo-

Table 1. Multi-trait variance components, genetic (above diagonal), and error (below diagonal) correlations, and heritabilities1 (on diagonal) 
by trait 

Trait1
Genetic 

SD

Permanent 
environment 

variance2
Herd-sire 
variance2

Trait

Milk 
yield

Fat 
yield

Protein 
yield SCS DPR PL

Milk yield (kg) 656 28 7 20 0.45 0.81 0.20 −0.32 0.08
Fat yield (kg) 24 28 7 0.69 20 0.60 0.15 −0.33 0.08
Protein yield (kg) 17 28 7 0.90 0.75 20 0.12 −0.35 0.10
SCS (log2) 0.46 18 5 −0.10 −0.10 −0.10 12 −0.30 −0.38
DPR (%) 3.4 12 4 −0.10 −0.10 −0.10 −0.05 4 0.51
PL (mo) 5.0 0 5 0.15 0.14 0.17 −0.15 0.20 8

1DPR = daughter pregnancy rate; PL = productive life.
2Percentage of phenotypic variance.
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retical justification is that covariances between EBVM 
for different traits are proportional to the RELM and 
are mostly genetic rather than environmental if many 
daughters are included.

Validation

The new and previous software were compared in 
2 main tests. The first determined if evaluations were 
the same or similar given the same model, pedigrees, 
and phenotypes but without genotypes. Genetic trends, 
Pearson correlations, and standard deviations of breed-
ing values were compared. Numbers of the top 100 
bulls in common using new and previous software were 
documented for the example traits protein, SCS, and 
DPR within breeds Holstein, Jersey, and Brown Swiss. 
The second test used truncation to investigate the 
predictive ability of multi-trait instead of single-trait 
models for national data. December 2012 evaluations 
were predicted using lactations initiated before Octo-
ber 2008 for bulls that had no daughter records before 
October 2008. Interbull genetic trend validation meth-
ods 1, 2, and 3 (Boichard et al., 1995) were applied 
to the multi-trait solutions. Method 1 tests whether 
first- and all-lactation trends are similar, method 2 
tests whether daughter yield deviations are consistent 
across time within sire, and method 3 tests the trend 
in recent daughters added after truncation. Also, multi-
trait HCR and CCR evaluations were submitted to 
the September 2013 Interbull test run. The resulting 
estimated genetic correlations between the US and all 

other country conception or nonreturn rates were com-
pared with the corresponding February 2013 estimates 
that included single-trait, single-breed US evaluations.

Correlations of 2012 evaluations from previous soft-
ware with single-trait, multi-trait, and previous evalu-
ations from 2008 data were computed for bulls that 
had no daughters in 2008 (parent average evaluations) 
and for bulls that had 10 to 200 daughters in 2008 and 
>500 daughters in 2012. The previous evaluations were 
from January 2009 and included about 2 more months 
of daughters, whereas evaluations from new software 
included completed records instead of records in prog-
ress. Completed records for PL were from the lifetime 
instead of the lactation and provided much more in-
formation, so cows that first calved after October 2006 
had their PL records removed. Similarly, DPR records 
were removed for calvings after May 2008 to mimic a 
5-mo delay in receiving fertility compared with yield 
and SCS data. This provided a similar but not exactly 
equivalent amount of information for the new and pre-
vious software for each trait.

RESULTS AND DISCUSSION

Correlations

For the 7-trait all-breed animal model, evaluations 
from the new and previous software were very similar 
(Table 2). For recent Holstein bulls, correlations of 
single-trait with previous EBV were >0.995 for all 
traits, even with the revised heritability for yield traits, 

Table 2. Correlations of single-trait all-breed model evaluations from new and previous software for bulls born from 2000 through 2008 with 
>50 daughters by breed 

Breed
Bulls  
(no.)

Milk  
yield

Fat  
yield

Protein 
yield SCS

Daughter 
Pregnancy rate

Productive life

Single trait Multi-trait

Holstein 9,476 0.996 0.996 0.995 0.999 0.995 0.988 0.967
Jersey 867 0.993 0.994 0.992 0.998 0.993 0.977 0.936
Brown Swiss 104 0.989 0.991 0.991 0.998 0.989 0.975 0.937
Guernsey 37 0.994 0.990 0.991 0.999 0.993 0.971 0.955
Ayrshire 21 0.985 0.971 0.974 0.998 0.963 0.982 0.976

Table 3. Correlations of previous software single-trait evaluations with new software multi-trait evaluations for bulls born from 2000 through 
2008 with >50 daughters in the all-breed model by breed 

Breed
Bulls  
(no.)

Milk  
yield

Fat  
yield

Protein 
yield SCS

Daughter 
Pregnancy rate

Productive life

Single trait Multi-trait1

Holstein 9,476 0.994 0.994 0.993 0.996 0.971 0.951 0.967
Jersey 867 0.993 0.992 0.991 0.993 0.952 0.936 0.938
Brown Swiss 104 0.985 0.987 0.988 0.995 0.952 0.913 0.937
Guernsey 37 0.991 0.988 0.987 0.992 0.956 0.891 0.907
Ayrshire 21 0.981 0.972 0.972 0.996 0.906 0.948 0.951
1Correlation of previous approximate multi-trait with new multi-trait evaluations.
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but were lower for PL because of model changes. Other 
breeds had correlations a little lower than Holstein ex-
cept for SCS, which was 0.998 or 0.999 for all breeds. 
Correlations of multi-trait with previous EBV (Table 
3) were slightly lower because the previous EBV were 
single-trait. From this comparison, numbers of the top 
100 US Holstein bulls in common were 85 for protein, 
87 for SCS, and 71 for DPR. Corresponding numbers 
were 88, 89, and 78 for Jersey, and 91, 86, and 80 for 
Brown Swiss. Correlations of new single-trait with 
new multi-trait EBV (Table 4) were high for yield 
traits and SCS of all breeds, but lower for DPR and 
PL as expected because those traits are less heritable 
and expressed later. Correlations for protein EBV in 
early years (results not shown) were also lower when 
multi-trait methods were used because both milk and 
fat were used to provide information for the missing 
protein records, whereas the approximate multi-trait 
method in the previous software used only milk as a 
correlated trait.

For the 3-trait fertility model, correlations of evalu-
ations from previous and new software applied to the 
same data were about 0.995 within each breed for both 
HCR and CCR. Small differences occurred because the 
new software included all ancestors and unknown-par-
ent groups, whereas the previous model truncated the 
pedigree and did not include groups. The lactation and 
individual breeding models were correlated by 0.972 for 
HCR and 0.986 for CCR in Holsteins and slightly less 
in other breeds (Table 5). Current evaluations had high 
correlations with either the new single-trait or multi-

trait evaluations for Holsteins but lower correlations in 
other breeds because of additional crossbred daughters 
and contemporaries.

For Holstein sires with >90% reliability, correlations 
between the single-breed and multi-breed models (both 
single-trait) were 0.986 for HCR and 0.992 for CCR, 
indicating little change in rank when adding the other 
breeds. Correlations between single-trait and multi-trait 
evaluations from the new software were about 0.99 for 
HCR and about 0.96 for CCR, with lower correlations 
as expected for CCR because of its higher correlation 
with DPR.

Estimated regressions on inbreeding in the first anal-
ysis were nearly identical to previously assumed values, 
but estimated heterosis effects were smaller (Table 6). 
Compared with the previous heterosis estimates for 
yield traits, base heterosis was smaller but current 
heterosis was larger. The new estimates were larger for 
DPR and PL but smaller (less unfavorable) for SCS. 
Inbreeding depression per 1% inbreeding in the second 
analysis was estimated to be −0.21 for HCR, −0.10 for 
CCR, and −0.13 for DPR; the regression for inbreeding 
was more negative for DPR than in the first analysis. 
Heterosis was estimated to be 1.3 for HCR, 3.2 for 
CCR, and 1.4 for DPR.

Genetic trends within each breed were examined after 
adding the adjustment for expected future inbreeding, 
which measures the average inbreeding expected when 
an animal is randomly mated to the current popula-
tion (VanRaden, 2005). The genetic bases for each 
breed were first expressed as differences from Holstein 

Table 4. Correlations of new software single-trait evaluations with new software multi-trait evaluations for bulls born from 2000 through 2008 
with >50 daughters in the all-breed model by breed 

Bulls  
(no.)

Milk 
yield

Fat 
yield

Protein 
yield SCS

Daughter 
pregnancy rate

Productive 
life

Holstein 9,476 0.998 0.998 0.998 0.996 0.976 0.974
Jersey 867 0.998 0.999 0.999 0.995 0.960 0.956
Brown Swiss 104 0.996 0.997 0.997 0.996 0.965 0.973
Guernsey 37 0.998 0.998 0.998 0.993 0.966 0.984
Ayrshire 21 0.996 0.997 0.997 0.997 0.966 0.988

Table 5. Correlations of previous conception rate evaluations (EBV) with new single-breed and multi-breed EBV using single-trait (ST) and 
multi-trait (MT) lactation models by conception rate trait and breed for bulls with >50% reliability 

Conception 
rate trait Breed

Bulls  
(no.)

Correlation with previous evaluation
Correlation of ST  

and MT EBV from  
new software

New software,  
same model

Lactation  
model

All-breed  
ST

All-breed  
MT

Heifer Holstein 2,107 0.995 0.972 0.980 0.961 0.986
 Jersey 157 0.991 0.973 0.910 0.892 0.988
 Brown Swiss 7 0.993 0.955 0.954 0.957 0.999
Cow Holstein 15,556 0.996 0.986 0.973 0.952 0.958
 Jersey 1,390 0.995 0.984 0.943 0.904 0.954
 Brown Swiss 122 0.996 0.982 0.880 0.859 0.961
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cows born in 2005 and were then adjusted to within-
breed bases as is done for other yield and fitness traits. 
Trends were validated using Interbull tests 1 and 3 
for CCR and test 3 for HCR (test 1 does not apply 
to HCR because it compares first-lactation with all-
lactation trends). All breeds passed these tests for CCR 
and HCR. Test 2 estimates trend in DYD across time 
within sire and was also attempted for both traits, but 
only single-trait DYD were available, which differed 
from the multi-trait evaluations, and thus inconsistent 
results were observed. Multi-trait DYD were not yet 
programmed because diagonal blocks are regenerated 
from data during each iteration and not stored across 
iterations, but multi-trait contributions from daughters 
could be accumulated in memory for sires of interest 
instead of for all sires.

Genetic differences among breeds for fertility traits 
were fairly consistent with phenotypic differences (Ta-
ble 7). For HCR, Holsteins had the highest phenotypic 
and genetic averages. For CCR, Jerseys and Milking 
Shorthorns exceeded Holsteins, with Brown Swiss and 
Guernseys being the lowest. Genetic differences among 
breeds for the other traits were very similar to previous 
estimates, with comparisons provided for the example 
trait milk (Table 8). Jersey genetic merit for milk yield 
was slightly more favorable, probably because of the 
revised heterosis estimate. Standard deviations of milk 

yield EBV were slightly smaller than previous estimates. 
For yield traits, this might be caused by the reduced 
heritability, but the estimated genetic trends were not 
reduced, probably because the trends are determined 
by bulls with high reliability and their EBV are not 
affected by the assumed heritability.

Inclusion of foreign information into the domestic 
evaluation gave correlations with MACE of 0.98 to 0.99 
for Holstein bulls that had only foreign daughters com-
pared with 0.45 to 0.69 if only domestic information 
was included (Table 9). Correlations after including for-
eign information were only 0.94 to 0.98 for Jerseys be-
cause most foreign bulls were from New Zealand, which 
has low genetic correlations with the United States. 
Thus, reliabilities of New Zealand bulls remained low 
on the US scale, and the domestic parent averages and 
unknown-parent group solutions had more effect on 
their evaluations.

Computation for the single-trait model with 7 traits 
took 500 iterations initially, and 3 min per iteration 
for a total of 25 h, using 7 processors. For subsequent 
updates with new data, prior solutions are used and 
only 100 to 200 iterations may be needed. Single-trait 
solutions were used as priors for the multi-trait model 
so that only 200 additional iterations were needed, 
which required 53 h with 7 processors and 16 min per 
iteration. Convergence rates were nearly the same for 

Table 6. Estimates of inbreeding depression and heterosis using previous and new software 

Statistic Software
Milk 

yield (kg)
Fat 

yield (kg)
Protein 

yield (kg) SCS (log2)

Daughter 
pregnancy 
rate (%)

Productive life (mo)

Single- 
trait

Multi- 
trait

Inbreeding depression1 Previous −29 −1.1 −0.95 0.0030 −0.078 −0.22 −0.22
 New −30 −1.1 −0.91 0.0045 −0.071 −0.27 −0.25
Heterosis2 Previous 205 11.8 8.2 0.100 1.5 0.00 0.00
Base heterosis3 New 77 10.0 5.0 0.023 2.0 0.40 0.39
Current heterosis4 New 259 16.8 10.4 0.004 2.4 2.02 1.89
1Effect per 1% inbreeding.
2Effect for animals with 100% heterosis.
3Effect in base population for animals with 100% heterosis.
4Effect in current population for animals with 100% heterosis = base heterosis – 6(inbreeding regression).

Table 7. Phenotypic means for conception rate of cows born in 2005 and breeding values expressed as difference from Holsteins by breed and 
conception rate trait1 

Breed

Females with records (no.) Phenotypic mean (%) Breeding value mean (%)

HCR CCR HCR CCR HCR CCR

Holstein 302,007 543,491  56.0 31.8  0.0 0.0
Jersey 11,533 32,007  50.9 37.8  −0.8 +5.7
Brown Swiss 1,620 4,449  44.1 28.3  −7.1 −4.5
Guernsey 612 1,742  44.8 26.1  −6.7 −7.1
Ayrshire 574 1,444  47.6 38.1  −4.7 +0.7
Milking Shorthorn 422 836  47.4 40.4  0.0 +4.0
1HCR = heifer conception rate; CCR = cow conception rate.
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single-trait and multi-trait models, and the memory 
required was 35 GB for both, much less than the 256 
GB available but somewhat large because hash tables 
to renumber the original effects into equation numbers 
are in the solving program instead of a separate pre-
processing step.

Convergence tended to be slow for PL and fertility 
traits because of substantial genetic trend but low 
heritability. Correlations of single-trait PL genetic 
evaluations at 100, 200, 500, 1,000, and 2,000 iterations 
with those at 3,000 iterations were 0.964, 0.973, 0.985, 
0.996, and 0.9998, respectively. The respective SD of 
evaluations as a fraction of final SD were 0.944, 0.967, 
0.977, 0.984, and 0.996. The variance of change in EBV 
divided by the variance of EBV was 4 × 10−10 at itera-
tion 3,000. A correlation of 0.997 for evaluations at 500 
and 1,000 iterations indicated near convergence, but 
more iteration may be needed routinely to ensure full 
convergence of all traits.

Predictive Ability

Correlations of truncated with current evaluations 
indicate better predictive ability for the new than 
for the previous software and for multi-trait than for 
single-trait models (Table 10). Single-trait evaluations 
were more accurate than previous evaluations for all 
traits of Holsteins, both for bulls with parent average 
and bulls that added daughters. One exception was fat 

yield for bulls with parent average, where the previous 
evaluation had a higher correlation. Multi-trait evalua-
tions had correlations <0.01 higher than single-trait for 
both groups and all traits of Holstein bulls except for 
an increase of 0.023 for DPR of bulls that had daughter 
records. The small gains for multi-trait PL are because 
daughters had complete PL records in the truncated 
data, whereas current data include daughters with 
partial or no PL records. Correlations for single-trait 
evaluations were higher than with the previous software 
by 0.03 to 0.09 for Jerseys, probably because of fewer 
daughters per bull, the lower heritability used, and im-
proved estimates of heterosis for crossbred daughters. 
Multi-trait evaluations were more variable, with small 
gains or losses as compared with single-trait, probably 
because of fewer bulls in the test.

Trend Validation

Genetic trends for each breed and trait in the first 
analysis were very similar to previous estimates (Van-
Raden et al., 2007) but extended 6 additional years. 
For example, differences for the trait milk between new 
multi-trait and previous single-trait trends are small 
(Table 8). Figures 1 and 2 provide breed differences for 
CCR and HCR, respectively, from the second analysis 
and genetic trends calculated as average breeding val-
ues by birth year for females with a phenotype for at 
least one trait. All breeds had negative genetic trends 

Table 8. Differences from Holstein EBV milk on an all-breed scale, EBV milk standard deviations in 2005, and genetic trends from 1965 through 
2005 on a within-breed scale using previous and new software by breed 

Breed

Difference from Holstein EBV  
milk (kg) 2005 EBV milk SD (kg) Genetic trend (kg)

Previous New Previous New Previous New

Holstein 0  0 622 595 3,195 3,504
Jersey −2,965 −2,738 542 524 3,152 3,613
Brown Swiss −1,985 −1,957 546 502 2,597 2,818
Guernsey −2,870 −2,859 588 560 2,800 3,079
Ayrshire −2,609 −2,619 430 406 2,036 2,195
Milking Shorthorn −3,097 −2,832 393 375 2,233 2,452

Table 9. Correlations of previous single-trait evaluations that included foreign information (multi-trait across-country evaluation, MACE) with 
new single-trait evaluations for Holstein and Jersey bulls with only foreign daughters before and after adding MACE 

Breed
Bulls 
(no.)1 MACE

Milk 
yield

Fat 
yield

Protein 
yield SCS

Daughter 
pregnancy 

rate
Productive 

life

Holstein 14,931 No 0.685 0.454 0.648 0.567 0.600 0.636
  Yes 0.993 0.991 0.993 0.996 0.980 0.976
Jersey 1,194 No 0.634 0.505 0.535 0.553 0.456 0.450
  Yes 0.941 0.968 0.956 0.963 0.976 0.918
1Not all bulls had evaluations for all traits.
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for CCR until recent years. For HCR, Holstein and 
Jersey had fairly steady merit across years, whereas the 
other breeds had negative genetic trends.

Validation was conducted for trends from both 
analyses. All 30 breed–trait combinations passed trend 
validation method 1, which was applied to only 6 traits 
because PL is coded as a lifetime record rather than 

separate lactation records and because trait HCR 
does not include multiple lactations. For method 2, 26 
breed–trait combinations passed but 4 did not: Hol-
stein DPR, Jersey SCS and PL, and Brown Swiss PL. 
Method 2 was not applied to CCR or HCR because 
only single-trait daughter deviations were computed 
that did not contain the correlated information from 

Table 10. Correlations of truncated and current evaluations using previous and new software for bulls with no daughter records in July 2008 
and bulls that gained daughter records after July 2008 by trait 

Breed Trait

Bulls with no daughter records1 Bulls that gained daughter records2

Previous New single-trait
New 

multi-trait Previous
New 

single-trait
New  

multi-trait

Holstein Milk yield 0.579 0.577 0.584 0.792 0.812 0.820
 Fat yield 0.523 0.506 0.508 0.795 0.823 0.813
 Protein yield 0.559 0.560 0.561 0.792 0.827 0.813
 SCS 0.552 0.561 0.561 0.789 0.797 0.798
 Daughter pregnancy rate 0.528 0.606 0.601 0.659 0.694 0.704
 Productive life 0.661 0.641 0.658 0.818 0.744 0.790
Jersey Milk yield 0.648 0.670 0.672 0.843 0.874 0.875
 Fat yield 0.616 0.637 0.641 0.692 0.687 0.681
 Protein yield 0.599 0.630 0.627 0.769 0.794 0.792
 SCS 0.458 0.478 0.465 0.652 0.700 0.688
 Daughter pregnancy rate 0.556 0.591 0.545 0.678 0.704 0.699
 Productive life 0.558 0.544 0.569 0.743 0.591 0.690
1Included 4,059 Holstein and 415 Jersey bulls with 0 daughters in 2008 and >50 in 2012.
2Included 444 Holstein and 66 Jersey bulls with 10 to 200 daughters in 2008 and >500 daughters in 2012.

Figure 1. Genetic trends by breed for cow conception rate (%) on an all-breed scale. Color version available in the online PDF.
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DPR. For method 3, 26 combinations passed and 4 did 
not, those being Jersey fat yield, SCS, and PL, and 
Ayrshire CCR.

These validation results were slightly better than 
those for previous software, which did not pass some 
of the same breed–trait combinations (Holstein and 
Guernsey DPR, Jersey SCS, and Brown Swiss PL for 
method 2; Holstein PL, Jersey fat yield and SCS, Brown 
Swiss milk yield and PL, and Guernsey PL for method 
3). Improvements for PL such as multi-trait modeling, 
grouping by calving date rather than birth date, and 
the revised heterosis estimate improved validation re-
sults slightly. However, Interbull requires exchange of 
single-trait PL, which did not pass method 2 validation 
for Holsteins, whereas multi-trait PL did pass.

Genetic trend for CCR was more negative with multi-
trait processing because of the correlated influence of 
DPR. Genetic trends were validated for all breeds using 
Interbull tests 1 and 3 for CCR and test 3 for HCR. 
Estimated genetic correlations with other countries 
from Interbull changed little for Holsteins and averaged 
0.02 higher for HCR, 0.02 lower for CCR, and 0.04 
higher for CFI. Results were more variable for other 
breeds, with average correlations that were lower for 
both HCR and CCR but higher for CFI because the 
multi-trait model improves the consistency of the back-
calculation for CFI from CCR and DPR. A few recent 

bulls with numbers of observations that differed greatly 
for CCR versus DPR also had unexpected differences 
of multi-trait versus single-trait EBV. Future research 
could improve consistency by redefining DPR so that 
cows with more days open receive more weight, just as 
cows with more inseminations receive more weight.

Based on the small differences in accuracy and trend 
validation compared with the increased computation for 
the 7-trait model, implementation proceeded with the 
3-trait fertility model first in December 2013. A 3-trait 
yield model and single-trait SCS and PL models are 
scheduled to switch to the new software in December 
2014. Faster computation could allow larger multi-trait 
models in the future, such as including conformation 
traits to obtain exact rather than approximate multi-
trait PL. Instead of including all conformation traits, 
including only 1 linear combination of conformation 
traits that best predicts PL could allow (effectively) 
multiple-trait PL with much less cost.

Remaining questions are how to include genotypes in 
the all-breed model, how to process nonnormal traits 
such as calving ease and stillbirth, and how to compute 
reliabilities for more general models. Models with more 
effects such as maturity rate could be solved now that 
more flexible programs are available, but such changes 
may not be a high priority compared with accounting 
for genomic preselection.

Figure 2. Genetic trends by breed for heifer conception rate (%) on an all-breed scale. Color version available in the online PDF.
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CONCLUSIONS

Flexible software was developed to allow model 
changes, multi-trait processing, and incorporation of 
foreign data. New and previous software gave very 
similar EBV for 7 traits of 30 million cows; correla-
tions with the previous single-trait, all-breed evalua-
tions were >0.995. Multi-trait methods converged fairly 
quickly using a block diagonal solving strategy, with 
results almost identical to single-trait for milk, fat, and 
SCS but improved for protein because of missing data 
in early years and high correlation with milk. In the 
3-trait fertility model, benefits were larger for HCR and 
CCR because those traits are missing before 2003 and 
had moderate to high correlations with DPR, which 
has been measured since 1960. Trend validation was 
conducted and 92 of 100 breed-trait-test combinations 
passed, a slight improvement over previous software. 
The new software was implemented in 2013 for HCR 
and CCR and is scheduled to be implemented for yield, 
SCS, single-trait PL, and DPR in 2014.
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